
N90-29060

THE KALI MULTLARM ROBOT PROGRAMMING AND

CONTROL ENVIRONMENT

Paul Backes t, Samad Hayati t, Vincent Hayward *, and Kaxn Tso*

t Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

*McGill Research Center for Intelligent Machines

Montrdal, Qudbec Canada

Abstract

The KALI distributed robot programming and control environment is described within

the context of its use in the JPL telerobot project. The purpose of KALI is to provide a flexible

robot programming and control environment for coordinated multi-arm robots. Flexibility,

both in hardware configuration and software, is desired so that it can be easily modified to

test various concepts in robot programming and control, e.g., multi-arm control, force control,

sensor integration, teleoperation, and shared control. In the programming environment, user

programs written in the C programming language describe trajectories for multiple coordi-

nated manipulators with the aid of KALI function libraries. A system of multiple coordinated

manipulators is considered within the programming environment as one motion system. The

user plans the trajectory of one controlled Cartesian frame associated with a motion system

and describes the positions of the manipulators with respect to that frame. Smooth Cartesian

trajectories are achieved through a blending of successive path segments. The manipulator

and load dynamics are considered during trajectory generation so that given interface force

limits are not exceeded.

I Introduction

Research and evaluation of robotics concepts are often hindered by difficulty in the im-

plementation process. Current robot programming and control environments have limited task

description and implementation capabilities or have hardware/software environments which

are difficult to modify, thus making them difficult to use in quickly changing implementation

environments. A wide array of research efforts in robotics are presently being pursued at

JPL. The present implementation environment, while quite powerful, is difficult to modify

to include the added capabilities that the research efforts are producing. This situation has

prompted a collaborative effort between JPL and McGill University to create a new robot

programming and control environment, Kali, which has simple but powerful task description

capabilities and an open modular architecture to provide for evolving capabilities.

A basic goal of the robotics research at JPL is the development of a space telerobot

system. The JPL telerobot testbed is used to develop, test, evaluate, and demonstrate state

of the art space technology through development of likely space robotics tasks such as satel-

lite grappling and repair and orbital replacement unit changeout. Several subsystems, from

173



low level task execution through sensing,vision, and planning, coordinate efforts to execute
the tasks. The Kali system will be used for the low level task executionand sensingpart
of the JPL telerobot system. At this level many researchareasdemanda powerful, flexible
systemfor implementation. Theseresearchareasinclude sharedcontrol, traded control, mul-
tiple arm control, redundant arm control, teleoperation, task spacedescription and control,
force/position hybrid control, sensordesignandintegration, adaptivecontrol methods,flexible
arm control, and human factors.

The present robot control environment used for JPL telerobot research is Multi-Arm

RCCL which provides for coordinated motion of two arms [1]. This is an extension of the

original version of RCCL developed by Hayward at Purdue University [2]. Kali utilizes many

of the concepts used in RCCL. Results of work on Kali prior to this paper can be found in
[3,4,5,6,7].

II Standard Kali

Kali is a low level software and hardware environment for trajectory description and

control of multiple coordinated machines, e.g., manipulators, walking machines, or robotic

hands. The initial Kali system will be implemented specifically for control of multiple co-

ordinated manipulators. At the high level of Kali, a collection of C language functions are

provided which allow the user to describe and implement coordinated motion of multiple ma-

nipulators using a C language program. The lower level of Kali has processes distributed over
multiple processors in a VMEbus environment.

It is desired with the user interface to Kali to provide the user with an environment

to, as easily and generally as possible, describe and execute a task which requires the motion

of one or multiple coordinated arms. This is done by separating the task description from

the specifics of the underlying mechanical system. The user describes the task in task space,

i.e., the motion and forces of a Cartesian frame along with task space constraints. Underlying
mechanical system constraints can be specified independently from a specific task and can be

considered automatically by Kali which removes the burden of the details of the underlying
mechanical system from the user.

Dynamics constraints of the underlying mechanical system are considered in trajectory

generation. The load limitations of a manipulator can be specified and a trajectory will be

determined which does not require the arm to produce forces greater than the limits specified.

This requires the user to provide dynamics models of all manipulators and objects.

An important feature of Kali is its modular functionality. Modularity simplifies soft-

ware and hardware customization resulting in a convenient environment for research or cus-

tomization for a specific installation. Software modules such as trajectory generation and

servo control have defined functionality allowing them to be replaced without altering other
parts of the system.

The hardware environment was selected for simplicity of implementation, computa-

tion speed, and upward compatibility with advancing processor technology. Kali utilizes a

distributed hardware environment which allows for parallelization of computations, simplified

sensor integration, and modular hardware functionality.

174



II.1 Motion Systems

Motion description in Kali is specified in terms of a motion system. A motion system
describes the motion of a Cartesian coordinate frame, the Control frame, and the constraints

associated with the Cartesian motion. User task description involves describing the motion of

the Control frame in terms of time synchronization, destinations, velocities, and transmitted

forces. Coordinated motion of multiple manipulators is achieved by kinematically constrain-

ing the manipulators to the Control frame. Multiple motion systems can be described and

executed allowing manipulators to operate independently or semi-coordinated by specifying

related completion times.

All information describing the motion of a motion system is placed in a motion record

and motion records are placed in a queue to be processed on a first-in first-out basis by the

trajectory generator. Motions are processed by a finite state model where the motions go

through a sequence of states depending on control flags.

II.2 Spatial Relationships

Spatial relationships in a motion system are described by frame transformation graphs

in the form of ring structures. Each ring structure, or loop, in the structure is equivalent to

the equation
B M T D C = Identity (1)

where B represents the manipulator base transform from a fixed world frame to the manipula-

tor base, M represents the manipulator transform, T the tool transform from the manipulator

final link to the controlled frame, C the goal position of the control frame, and D the drive

transform which is interpolated from an initial value which satisfies the initial state to the

identity transform in order to produce the desired motion. Each transformation ring in a

motion system is set up by one position making primitive. All loops of a motion system share

a common drive transform. Spatially coordinated motion of manipulators which are not part

of the same motion system is possible by having common transforms in their ring equations

other than the drive transform, e.g., common control frame goal positions. The ring equations

allow for additional frames in the loop such as for sensor based motion as described below.

Each transform in the loop has associated with it a bound function which is used to

update the transform each sample interval. Standard functions such as those bound to the

M and D transforms are supplied by Kali, although the user can specify new ones simply by

placing pointers to these in the ring equation. Other functions such as those bound to the A

transforms of figure 2 below are supplied by the user to provide for specialized motion such

as sensor based motion for compliant control. The order of evaluation of the transform-bound

functions is specifiable by the user. The normal order is sensor-based functions (e.g., bound to

A above), path planning functions (bound to D above), and lastly, update of the manipulator
transform M.

Many types of multiple manipulator motion are possible using Kali. Three examples

utilizing one and two motion systems are depicted in figures 1 - 4. In figure 1 the two

arms share a common motion system to move an object that both arms are grasping. The

figure shows the transformations from the ring equation between coordinate frames which are

175



attached to physical objects. Figures 2 - 4 show only the frame transformation graphs. Figure
2 shows the transformation graph for figure 1 with the addition of the A transforms. The

small perturbations caused by the A transforms would be difficult to show in figure 1 which

shows the physical objects. Figure 3 depicts the case where two manipulators are moving to

grasp a common object. Since the arms have different distances to move, independent motion

systems (drive transforms) are used to move the arms. The arms share a common control

frame goal position which specifies the grasp points on the object for the arms. Concatenated

manipulators using two motion systems such as for a gross-positioning arm with an attached
micromanipulator are shown in figure 4.

II.3 Dynamics

The trajectory generator automatically considers the dynamic constraints of objects

associated with frames in the ring equations when determining the parameters of the motion

system drive transform. Functions describing the dynamics of the objects, including the

manipulators, must be provided by the user. These functions return acceleration, gravity, and

velocity terms. Standard dynamic model functions, such as for solid cubes, will be provided

by Kali. The user may also specify the maximum force that can be taken at an interface. For

example, a manipulator's load limit can be specified in this way and the trajectory generator
will produce trajectories which will not violate this limit.

II.4 Trajectory Specification

Trajectories in Kali are considered as a string of Cartesian linear path segments con-

nected by transitions. Velocity is controlled along a path segment and acceleration is controlled

during transitions between path segments. The Cartesian trajectory function generates the

motion parameters of a drive transform for a motion system such that the specified spatial,
temporal, and dynamic constraints are satisfied. Constraints at the task level are described

as part of the motion system by the user. The Kali-supplied trajectory generator is described
in [5].

The transition between segments is accomplished by the blending of successive path
segments with blending controlled by preview and acceleration factors and accelerations lim-

ited by dynamic constraints. The preview factor conveys the amount of look ahead the system

must perform before a transition. For example, for a preview factor range of 0 - 1, a value of

0 indicates that the trajectory generator has no knowledge of a new path segment ahead and

stays on the current path segment through the goal position. At this time, the start of the

next path segment, the transition begins, thus causing an overshoot. For a preview factor of

0.5, trajectory wander off of each of the successive segments is equally permissible during the

transition. The acceleration factor conveys the amount of admissible trajectory wander. A

small acceleration factor specifies a smaller admissible wander, thus causing a longer transi-

tion time. This blending method is robust to ill-defined trajectories since it does not rely on
position, velocity, and acceleration boundary conditions.

Other motion system constraints include beginning and ending times, coupling factors,

and maximum transmitted forces. Beginning and ending times can be used to synchronize
motions of different motion systems. The amount of force transmission between each kinematic

relationship is specified with a coupling factor. This factor is normally set to 1, which means

176



T2

D M2

C B2

Figure 1: Two arms manipulating a common object

Figure 2: Transformation graph for two arms manipulating a common object

177



00



that all forces applied to an object attached to that relationship must be accounted for by the

next object. The coupling factor can also be used for load sharing in multiple-arm control.

Coupling factors of 0.5 between the load and each of the two arms can be specified indicating

that the trajectory generator considers each arm to dynamically carry only half of the load,

thus allowing increased speed versus a one-arm motion. The maximum force that can be

transmitted at an interface can also be specified. The transition time is initially determined

from the temporal constraints and increased as needed to satisfy the dynamic constraints

specified by the maximum transmitted forces and determined by the dynamics functions and

the coupling factors.

II.5 Control

Kali does not provide a standard servo level control algorithm for controlling the ma-

nipulators. Instead, Kali provides setpoints for the servo control and the interfaces to the

control algorithms. Several control schemes for possible use within Kali are presently under

study [61.

II.6 Software

The Kali software environment is written in the C programming language and orga-

nized into five layers, each of which contains multiple libraries. The first layer, MUX (McGill

University Extensions) runs on top of the commercial real time multi-processor operating

system VxWorks (from Wind Rivers Systems, Inc). MUX provides an environment for run-

ning various synchronous and asynchronous processes on multiple processors [7]. The second

software layer is also a support layer but is independent of the operating system. There are

libraries for buffered input and output of data, geometric computations on vectors, transfor-

mations, quaternions, and kinematics and dynamics models of the manipulators. The third

software layer implements the servo control using the lower level software layers. The fourth

layer updates the kinematic loops in real time using two libraries. The emotion library is

used to compute Cartesian trajectories given the constraints in the motion records. The rings

library maintains and updates the kinematic loops. The fifth layer continues to be developed.

It consists of user level functions to simplify task description, e.g., accommodation functions

and functions specific to dual arm control.

II.7 Run Time Processing

Synchronous and asynchronous run time processes are distributed over multiple proces-

sors on a VME backplane to increase speed through parallelization. Bus bandwidth is reduced

by placing separate functionalities on separate processors. The resulting processor allocation

method is simple rather than optimal to facilitate implementation and evolution. Multiple

update rates are utilized so that rapidly changing quantities (e.g., position, sensed forces) are

updated more often than slowly changing ones (e.g., inertia characteristics, Jacobian). Asyn-

chronous processes may include the user process, dynamics computations, and computation of

the Jacobian. The user process initializes the Kali environment, describes the motion systems,

issues motion requests, and communicates with higher level systems. Synchronous processes

include the Cartesian setpoint generator, servo control, and sensor I/O. Communication be-

tween processes is done with message passing and shared memory. An example allocation of

processes may be having the user process and trajectory generator on CPU l, dynamics on

179



CPU 2 and CPU 3, kinematics on CPU 4, and servo control on CPU 5 and CPU 6.

II.8 Hardware Environment

The Kali hardware environment consists of multiple processors connected on a VME

backplane. Presently Heurikon single board computers with the Motorola MC68020 and

MC68881 are used at 20 MHz with 1 Mbyte of RAM. A secondary VSBbus serves to access

shared memory for all asynchronous communications. C language software is developed and

compiled on a SUN workstation under Unix and downloaded to the processors on the VMEbus

via Ethernet. Use of the VxWorks real time operating system provides for processor upgrade

(e.g., MC68030, SPARC) as processor technology improves. Presently an initial version of

Kali is running at McGill University with 1 KHz sample rate.

III JPL Implementation for Telerobot

As explained in section I above, one of the basic goals of robotics research at JPL is the

development of a space telerobot system. The standard mode of control for the telerobot is

shared control [8] where the operator and autonomous control system both have inputs to the

system. The modular architecture of Kali will be utilized to incorporate the shared control

mode into the system. A module which may be fully autonomous in standard Kali may consist

of an interface submodule which merges inputs from autonomous and operator submodules

which each perform the functionality specified for the module, e.g., trajectory generation.

The hardware incorporated into the system includes two manipulators (eventually to

be a 17 degree of freedom dual-arm torso system from Robotics Research Corp.), servoed

grippers, multiple cameras for vision, other sensors (e.g., force/torque wrist sensors), and two

force reflecting hand controllers. Several subsystems are involved in task execution including

task planning, sensing, and control. Kali will be used for the low level task execution, control,

and sensing. An initial proposed hardware setup for the JPL Kali system is shown in figure

5. Kali runs in one VME chassis and communicates with multiple devices. For the two arm

system, Kali processes for the separate arms (e.g., kinematics, dynamics, sensing) are put on
separate processors. The user program and trajectory generator for both arms are located

on a single processor. Actuator commands are sent to robot motor controllers to control the

arms and senor data from the arms is sent back via parallel ports. A VME chassis is used to

control and sense each of the two hand controllers. A third manipulator equipped with vision

cameras is controlled independently from Kali in the initial system.

IV Kali Extensions

Kali's modular architecture provides for further evolution of the Kali environment.

Evolution may be in the form of enhancements of the functions presently in Kali or additions

of functionality. For example, the user may be provided with the option of selecting the servo

control algorithm to be used, e.g., joint PID, operational space, multi-arm. An environment

contact model could be supplied either by Kali or by the user. A world geometric model
database could be added to simplify task description. Real-time collision avoidance of both

the arms and environment could be included. A more flexible processor allocation scheme

could be incorporated -- either specifiable by the user or an automatic optimizing scheme.

Also, force trajectory generation at the user level could be provided.

180



ISI

PARALLEL I/0

68020 HACS H

68020 COM- HM UNICATIONS

GRAPHICS

GRAPHICS
GENERATOR

ETHERNET CARD



V Conclusions

The Kali multi-arm robot programming and control environment has been described

in the context of its use in the low level of the JPL telerobot project. Its advanced features,

e.g., multi-arm coordination, dynamically constrained Cartesian trajectory generation, and its

open, modular architecture, make it a valuable tool for implementation of advanced robotics

concepts. The initial version of Kali, presently running at McGill University, will be further

enhanced and ported to JPL's telerobotics laboratory to serve as the low level of the telerobot

shared control environment. Taking advantage of its modular design, the Kali environment

shall continue to be enhanced as research in the various functional areas of Kali develops.

Acknowledgements

The research described in this paper was performed at the Jet Propulsion Laboratory,

California Institute of Technology, under contract with the National Aeronautics and Space

Administration. Graphic arts by Donna Milton are also appreciated.

References

[1] J. Lloyd, M. Parker, and R. McClain. Extending the rccl programming environment to

multiple robots and processors. In Proceedings IEEE International Conference on Robotics

and Automation, pages 465-474, 1988.

[2] V. Hayward and R. Paul. Robot manipulator control under unix rcch a robot control "c"

library. International Journal of Robotics Research, 5(4):94-111, Winter 1986.

[3] A. Nilakantan and V. Hayward. Synchronizing multiple manipulators. In Second Interna-

tional Symposium on Robotics and Manufacturing, Research, Education and Applications,
1988.

[4] V. Hayward and S. Hayati. Kali: an environment for the programming and control of

cooperative manipulators. In Proceedings American Control Conference, 1988.

[5] V. Hayward, L. Daneshmend, and A. Nilakantan. Model based trajectory planning using

preview. In SPIE Conference, Space Automation IV, 1988.

[6] V. Hayward, L. Daneshmend, and S. Hayati. An overview of kali: a system to program

and control cooperative manipulators. In Fourth International Conference an Advanced

Robotics, 1988.

[7] A. Topper, L. Daneshmend, and V. Hayward. A computing architecture for a multiple

robot controller for space applications (kali project). In Fifth CASI Conference on Astro-

nautics, 1988.

[8] S. Hayati and S. Venkataraman. Design and implementation of a robot control system

with traded and shared control capability. In IEEE International Conference on Robotics

and Automation, 1989.

182



TELEROBOT PERCEPTION

183




